Alternatives to Large Var, Varma and Multivariate Stochastic Volatility Models
نویسنده
چکیده
In this paper, our proposal is to combine univariate ARMA models to produce a variant of the VARMA model that is much more easily implementable and does not involve certain complications. The original model is reduced to a series of univariate problems and a copula – like term (a mixture-of-normals densities) is introduced to handle dependence. Since the univariate problems are easy to handle by MCMC or other techniques, computations can be parallelized easily, and only univariate distribution functions are needed, which are quite often available in closed form. The results from parallel MCMC or other posterior simulators can then be taken together and use simple sampling resampling to obtain a draw from the exact posterior which includes the copula like term. We avoid optimization of the parameters entering the copula mixture form as its parameters are optimized only once before MCMC begins. We apply the new techniques in three types of challenging problems. Large timevarying parameter vector autoregressions (TVP-VAR) with nearly 100 macroeconomic variables, multivariate ARMA models with 25 macroeconomic variables and multivariate stochastic volatility models with 100 stock returns. Finally, we perform impulse response analysis in the data of Giannone, Lenza, and Primiceri (2015) and compare, as they proposed with results from a dynamic stochastic general equilibrium model.
منابع مشابه
Modelling Dynamic Conditional Correlations in the Volatility of Spot and Forward Oil Price Returns
This paper estimates the dynamic conditional correlations in the returns on Tapis oil spot and onemonth forward prices for the period 2 June 1992 to 16 January 2004, using recently developed multivariate conditional volatility models, namely the Constant Conditional Correlation Multivariate GARCH (CCCMGARCH) model of Bollerslev [1990], Vector Autoregressive Moving Average – GARCH (VARMAGARCH) m...
متن کاملIdentification of outliers types in multivariate time series using genetic algorithm
Multivariate time series data, often, modeled using vector autoregressive moving average (VARMA) model. But presence of outliers can violates the stationary assumption and may lead to wrong modeling, biased estimation of parameters and inaccurate prediction. Thus, detection of these points and how to deal properly with them, especially in relation to modeling and parameter estimation of VARMA m...
متن کاملPortfolio Single Index (PSI) Multivariate Volatility Models
The paper introduces the structure of parsimonious Portfolio Single Index (PSI) multivariate conditional and stochastic constant correlation volatility models, and methods for estimation of the underlying parameters. These multivariate estimates of volatility can be used for more accurate portfolio and risk management, to enable efficient forecasting of Value-at-Risk (VaR) thresholds, and to de...
متن کاملBayesian analysis of multivariate stochastic volatility with skew distribution
Multivariate stochastic volatility models with skew distributions are proposed. Exploiting Cholesky stochastic volatility modeling, univariate stochastic volatility processes with leverage effect and generalized hyperbolic skew t-distributions are embedded to multivariate analysis with time-varying correlations. Bayesian prior works allow this approach to provide parsimonious skew structure and...
متن کاملDynamic Correlations in Symmetric Multivariate SV Models
This paper proposes two types of stochastic correlation structures for Multivariate Stochastic Volatility (MSV) models, namely the constant correlation (CC) MSV and dynamic correlation (DC) MSV models, from which the stochastic covariance structures could be obtained easily. Both structures can be used for purposes of optimal portfolio and risk management, and for calculating Value-at-Risk (VaR...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016